Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
In Vivo ; 35(6): 3495-3499, 2021.
Article in English | MEDLINE | ID: covidwho-1485631

ABSTRACT

BACKGROUND/AIM: COVID-19 may lead to progressive respiratory failure as a consequence of alveolar damage, resulting in death. The aim of this study was to evaluate cytogenetic damage in oral cells of COVID-19 patients by micronucleus assay. PATIENTS AND METHODS: A total of 11 COVID-19 patients aged 40.7±9.3 years (5 men and 6 women) were included in this study. For the control group, a total of 15 participants not infected with SARS-CoV-2 virus were included. The mean age was 41.6±6.2 years (5 men and 10 women). RESULTS: The results showed statistically significant differences (p<0.05) in micronucleated buccal mucosa cells of COVID-19 patients. In addittion, a statistically significant increase in karyolysis and karrhyorexis (p<0.05) was observed in COVID-19 patients compared to control. CONCLUSION: SARS-CoV-2 virus can induce mutagenesis and cytotoxicity in oral cells.


Subject(s)
COVID-19 , Mouth Mucosa , Adult , Biological Monitoring , Cytogenetic Analysis , DNA Damage , Female , Humans , Male , Micronucleus Tests , Middle Aged , SARS-CoV-2
2.
Rev Neurosci ; 32(2): 235-247, 2021 02 23.
Article in English | MEDLINE | ID: covidwho-947988

ABSTRACT

The coronavirus disease (COVID-19), identified in Wuhan, China, on December 2019, was declared a pandemic by the World Health Organization, on March, 2020. Since then, efforts have been gathered to describe its clinical course and to determine preventive measures and treatment strategies. Adults older than 65 years of age are more susceptible to serious clinical symptoms and present higher mortality rates. Angiotensin-converting enzyme 2 (ACE2) is a major receptor for some coronavirus infection, including SARS-COV-2, but is also a crucial determinant in anti-inflammation processes during the renin-angiotensin system (RAS) functioning - converting angiotensin II to angiotensin 1-7. The decline in ACE2 expression that occurs with aging has been associated to the higher morbidity and mortality rates in older adults. These observations highlight the importance of investigating the association between COVID-19 and age-related neurodegenerative disorders, i.e., Parkinson's and Alzheimer's diseases. A possible option to reduce the risk of COVID-19 is vitamin D supplementation, due to its anti-inflammatory and immune-system-modulating effects. It has also been suggested that vitamin D supplementation plays a role in slowing progression of Parkinson and Alzheimer. The present study is a literature review of articles published on the theme COVID-19, Parkinson and Alzheimer's diseases, and the role played by vitamin D. PUBMED, MEDLINE, and EMBASE databases were consulted. Results confirm neurodegenerative and neuroinflammatory effects of COVID-19, aggravated in Parkinson's and Alzheimer's patients, and the important role of vitamin D as a possible therapeutic strategy. Nevertheless, randomized controlled trials and large population studies are still warranted.


Subject(s)
COVID-19 Drug Treatment , Cholecalciferol/therapeutic use , Neurodegenerative Diseases/drug therapy , SARS-CoV-2/drug effects , Age Distribution , COVID-19/complications , Humans , Neurodegenerative Diseases/etiology , SARS-CoV-2/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL